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SUMMARY

In order to study the error growth due to initial uncertainties in the model state, this paper examines the
alignment dynamics of the perturbation velocity vector in quasi-geostrophic flows. In a barotropic context, the
time evolution of the perturbation velocity field is the sum of two terms: (i) the stretching of the perturbation
velocity vector by the basic-state velocity-gradient tensor (denoted ∇u) and (ii) the perturbation ageostrophic
pressure gradient, which also depends on ∇u. Different analytical results show that such a system has two types
of preferred orientation that induce kinetic-energy growth: one orientation concerns one eigenvector of ∇u, the
other one is linked to a fixed point of the orientation equation of the perturbation velocity vector written in
strain coordinates. This analytical diagnostic is confirmed by using Monte-Carlo techniques in a quasi-geostrophic
oceanic-basin model of a stratified wind-driven double-gyre circulation, and these orientations are shown to be
the most probable. These preferred orientations are of great importance for diagnosing the most probable kinetic-
energy generation rate at each grid point. An interesting outcome is that the kinetic-energy error field is localized
in regions where the norm of ∇u is large.
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1. INTRODUCTION

Even though conventional parallel-flow problems have proved useful in under-
standing the barotropic and baroclinic instability mechanisms involved in large-scale
atmospheric and oceanic flows, actual flows are non-parallel and zonally varying.
Many phenomena, thus, tend to occur in preferred regions such as, for instance,
the specific localization of cyclone emergence in midlatitudes. Understanding regional
cyclogenesis is of great importance because the spatial distribution of the synoptic
eddy fluxes determine the position of the storm tracks, which themselves influence
the planetary-wave behaviour and the atmospheric low-frequency variability (Simmons
et al. 1983; Hoskins et al. 1983). Frederiksen (1983) characterized the local stability
properties of stationary zonally varying flows by looking at the geographical distribution
of the unstable normal modes of the linear eigenvalue problem, and found good corre-
spondences with observations. However, he could not explain the physical mechanism
involved in the localization.

Pierrehumbert (1984) has applied the WKB method to this problem, by separating
global modes and local modes that are localized at the point of maximum shear, but
such an approach needs a scale separation between the basic flow and the perturbation.
By completing a systematic study of the equations for linearized energetics, Mak and
Cai (1989) (referred to as MC in the following) in a barotropic case, and Cai and Mak
(1990) in a baroclinic situation, have generalized the well known parallel-flow result that
‘a perturbation extracts energy if its structure leans against the shear’. In a barotropic
context, their generalization states that in order ‘to optimally extract kinetic energy from
the basic flow, a perturbation must be elongated locally along the axis of contraction
of the basic deformation field. If the perturbation is oriented locally along the axis of
dilatation, it will lose kinetic energy to the basic flow’. In parallel-flow problems, for the
category of ‘unstable wave numbers’, an equilibrated structure exists that corresponds to
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the unstable normal mode, with a specific orientation of the perturbation structure with
respect to the shear.

Thus, building upon the generalization proposed by MC, the following question
emerges naturally: is there a generalization for localized instability problems of the
property of the unstable normal modes of parallel-flow problems that favours specific
orientations of growing perturbations? More specifically, can one analytically predict
which orientations will favour perturbation energy growth, and in which regions
will these locally equilibrated structures emerge? These questions are directly related
to cyclogenesis problems: for instance, Kucharski and Thorpe (2001) showed that
barotropic growth can dominate the initial phase of a cyclonic development, and that
specific horizontal perturbation structures are needed within specific regions to lead to
strong and fast cyclonic development. A related issue concerns predictability problems:
if the most probable structure of growing perturbations can be determined analytically,
then the average rate of energy extraction from the basic flow by the perturbations can be
forecast, and this is an important diagnostic for characterizing the limit of predictability
of a given flow.

In the present paper, we attempt to answer this question by considering the lin-
earized momentum equations, as examined by MC but in their Lagrangian barotropic
quasi-geostrophic form without taking friction into account.

The essential idea (cf. Straub 2003) is that, if the perturbation ageostrophic pressure
gradient were negligible, a closed system would appear for the perturbation velocity
vector, in which the time evolution would be simply determined through its stretching
by the basic-state shear ∇u.

This important observation, supplemented by an analytical approximation of the
pressure-gradient term, leads us to rationalize some features of the localized instability
problem for a quasi-geostrophic model, namely (i) the tendency for alignment of the
perturbation velocities with predictable directions of the basic-state flow, (ii) the spatial
localization of its generation rates and (iii) the regionalization of the error fields.

Moreover, we use results for alignment properties which have been established
recently for the growth of tracer gradients in two-dimensional turbulence (Lapeyre
et al. (1999), referred to as L99 hereafter); these results also address the problem
of the stretching of a vector field by the velocity-gradient tensor ∇u. Our approach
for numerical diagnostics of perturbation growth differs from the studies of localized
instability cited above, and relies instead on a Monte-Carlo approach whereby an
ensemble of simulations, initialized with small random perturbations of a reference flow,
is allowed to evolve for a length of time that corresponds to about five to ten straining
timescales of the basic state. Statistical properties of the perturbations that have emerged
after that finite time are then diagnosed for specific diagnostics.

The present paper is organized as follows: section 2 discusses the linearized
momentum equations and their comparison with the equations for the growth of tracer
gradients; section 3 reports on numerical diagnostics concerning alignment dynamics,
generation rates and error fields; and section 4 provides a discussion of our results.

2. BAROTROPIC PERTURBATION EQUATIONS

(a) Time evolution of the perturbation velocity
To study the kinetic-energy error growth, we have to consider the linearized

equations for the perturbation velocity field. The ageostrophic momentum equations
for the basic state are written here for simplicity in their barotropic form and without the
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β-effect (the β-effect is considered later).

Du
Dt

= −∇p1, (1)

where D/Dt = ∂/∂t + (u ·∇) denotes the geostrophic total derivative, u is the basic-
state geostrophic velocity field and p1 the ageostrophic pressure field. The momentum
equations of the linearized perturbation system can be written as

Du′

Dt
= −∇u · u′ − ∇p′

1, (2)

where ∇u is the basic-state velocity-gradient tensor. Bars in (2) denote quantities
associated with the reference flow, while primes denote perturbations. By taking the
curl of (2) we obtain the linearized perturbation vorticity equation

Dω′

Dt
= −u′ · ∇ω. (3)

ω ≡ ∂xv − ∂yu (where ∂x = ∂/∂x and ∂y = ∂/∂y) denotes the vertical component of
relative vorticity. In order to localize the kinetic-energy error growth, let us now consider
the local kinetic energy equation derived from (2)

1

2

∂u′2

∂t
= −u · ∇

(
u′2

2

)
− u′ · (∇u · u′)− u′ · ∇p′

1. (4)

The physical interpretation of the three terms of the right-hand side of (4) have been
developed by MC. The second term is the generation rate of the local perturbation
energy, whereas the two other ones (advection of the energy by the basic flow and the
pressure work) redistribute the perturbation energy spatially and do not contribute to the
global energetics. The generation rate can be viewed as the scalar product of two vectors
E and D as defined by MC

E = {1
2(v

′2 − u′2),−u′v′},
D = (∂xu− ∂yv, ∂xv + ∂yu). (5)

E depends on the perturbation structure and D represents the basic-state deformation
field where σn ≡ ∂xu− ∂yv is the stretching component and σs ≡ ∂xv + ∂yu the shear-
ing component. If E · D> 0 (or E · D< 0), the perturbation structure is such that it
can extract energy from (or lose energy to) the basic flow. The angle between the two
vectors E and D is thus essential for determining locally if the perturbation can extract
or not energy from the basic flow. As our present study focuses on this angle, let us
define different notations that will be useful in the following sections. We decompose
the perturbation velocity vector into its modulus ρ′ ≡ |u′| and into its angle θ ′

u′ = ρ′(cos θ ′, sin θ ′)= ρ′e′, (6)

with e′ denoting the unit vector which points in the same direction as u′.
With this notation, E can also be decomposed into its modulus (the kinetic energy

of the perturbation) and angle

E = ρ′2

2
{cos(π + 2θ ′), sin(π + 2θ ′)}. (7)
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Figure 1. Angles defining the directions of the vectors E and D.

φ is defined as the angle of the principal axes of the basic-state strain-rate tensor

(∂xv + ∂yu, ∂xu− ∂yv)= (σs, σn)= σ(cos 2φ, sin 2φ), (8)

where σ = |D| ≥ 0 is the magnitude of the strain rate. With this notation the angle of
the vector D with the x-axis is π/2 − 2φ. As shown in Fig. 1, the angle between E and
D is equal to π/2 + ζ ′ with ζ ′ ≡ 2θ ′ + 2φ. In our notation the fundamental term for the
local perturbation growth E · D can be expressed as

E · D = −u′ · (∇u · u′)= −ρ
′2

2
σ sin ζ ′, (9)

which depends on three terms: the already redistributed kinetic energy ρ′2/2 = |u′|2/2,
the rate of strain σ , and the angle ζ ′, which is studied in section 3(a). Dividing (4) by
the kinetic energy ρ′2/2, we obtain the Eulerian exponential kinetic-energy growth rate,
and the associated generation term is, thus,

δ ≡ E · D
ρ′2/2

= −σ sin ζ ′,

which is hereafter called the exponential kinetic-energy generation rate (using the
terminology of MC).

(b) Influence of ∇u on the orientation equation of the perturbation velocity
Let us first consider separately the dynamical influence of ∇u on the orientation

of the perturbation velocity vector, the ageostrophic pressure role is considered in
section 2(c). The important point to note is that, if the perturbation ageostrophic pressure
gradient is dropped in (2), a closed form is obtained for u′

Du′

Dt
= −∇u · u′, (10)
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i.e. the perturbation velocity field u′ is simply determined through its stretching by the
basic-state shear ∇u, which is a known entity. By taking the curl of the approximate
equation (10), one can also recover the exact linearized perturbation vorticity equa-
tion (3), which is, however, not a closed system for ω′ since (3) also depends on u′.
The approximate equation (10) amounts to studying the stretching of a vector field by
a given tensor; this approach was first exploited by Straub (2003) to study hydrostatic
three-dimensional perturbations in a two-dimensional reference flow. His motivation
came from an observation that, in an unstratified and non-rotating limit, (10) for the
perturbation velocity is exact and similar in its structure to the tracer-gradient and line-
element equations. However, in our quasi-geostrophic model, (10) is only an approxi-
mation that permits us to obtain some dynamical information when using the method
introduced by L99 for the tracer gradient; this method needs to be adapted to take into
account the influence of the ageostrophic pressure-gradient term ∇p′

1 in (2). The exact
equation for the tracer gradient is

D∇q
Dt

= −∇uT∇q, (11)

q denoting the tracer field. The difference between (10) and (11) is twofold: (i) for the
tracer-gradient evolution, the tensor involved is the transpose of the velocity-gradient
tensor and (ii) (11) applies to a gradient vector field while (10) applies to a non-divergent
vector field (see section 2(c)). Recent theoretical results on the dynamics of tracer-
gradient formation have shown that the tracer-gradient vector aligns with a preferential
direction and the gradient magnitude grows exponentially in time. This preferential
direction appears naturally when the gradient is decomposed into its norm and angle,
as shown by L99. Let us now derive the same equations as those of L99, but for the
perturbation velocity. In a quasi-geostrophic context, incompressibility (∂xu+ ∂yv = 0)
leads to

∇u =
[
∂xu ∂yu

∂xv ∂yv

]
= 1

2

[
σn σs

σs −σn

]
+ 1

2

[
0 −ω
ω 0

]
. (12)

Let us first consider the case of (10) for the velocity perturbation. The projections of
(10) on e′ and on e′⊥ ≡ (−sinθ ′, cos θ ′) lead to two equations, one for the norm ρ′ and
the other for the angle θ ′ of the perturbation velocity vector

1

ρ′2
Dρ′2

Dt
= −σ sin(2θ ′ + 2φ), (13a)

2
Dθ ′

Dt
= σ {−row − cos(2θ ′ + 2φ)}, (13b)

where

row ≡ ω

σ
. (14)

The dimensionless parameter row is the ratio between the vorticity ω and the mag-
nitude of the strain rate σ . The time evolution of ρ′ and θ ′ depends on the rela-
tive angle ζ ′ between the perturbation velocity vector and the axis of contraction of
the strain rate. For |row|< 1, the eigenvectors of ∇u correspond to the solutions of
the equation Dθ ′/Dt = 0, which leads to the orientations ζ ′ = ζ

row± ≡ ± arccos(−row).
The eigenvector of ∇u with the negative eigenvalue has a stable orientation ζ ′ = ζ

row−
leading to kinetic-energy growth, while the eigenvector with the positive eigenvalue has
an unstable orientation ζ ′ = ζ

row+ leading to kinetic-energy decrease.
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A more accurate expression than (13) can be derived in strain coordinates (follow-
ing L99 and Straub 2003) that only involves ζ ′

1

ρ′2
Dρ′2

Dt
= −σ sin ζ ′, (15a)

Dζ ′

Dt
= σ(−r ′ − cos ζ ′), (15b)

where

r ′ ≡ 1

σ

(
ω − 2

D φ

Dt

)
. (16)

The dimensionless parameter r ′ is the ratio betweenω − 2D φ/Dt (which is the vorticity
minus the rotation of the principal axes of the strain-rate tensor) and the magnitude of
the strain rate σ . If |r ′|< 1, that is for regions where strain dominates, (15b) has two
fixed points ζ r

′
± = ± arccos(−r ′), a stable one ζ ′ = ζ r

′
− and an unstable one ζ ′ = ζ r

′
+ .

From (15a), the stable orientation ζ r
′

− corresponds to an exponential growth of the
norm ρ′, while the unstable orientation ζ r

′
+ corresponds to an exponential decay of ρ′.

Note that the orientations ζ r
′

± have taken into account the rotation rate of D, which is
exactly −2D φ/Dt .

For the tracer gradient system, we have similar properties, i.e. two fixed points
ζ± ≡ ± arccos(r) depending on a parameter

r ≡ 1

σ

(
ω + 2

D φ

Dt

)
. (17)

We note that −ω in the formulation of the fixed points

ζ r
′

± = ± arccos

{
1

σ

(
−ω + 2

D φ

Dt

)}
is changed into ω in the tracer-gradient formulation

ζ± = ± arccos(r)= ± arccos

{
1

σ

(
ω + 2

D φ

Dt

)}
because of the transpose operator in (11). Numerical simulations of two-dimensional
turbulence in L99 show that the tracer-gradient orientation is statistically well aligned
with the stable direction ζ− corresponding to tracer-gradient growth. This orientation
is significantly more probable than that derived from the stable eigenvector of ∇uT

(the Okubo–Weiss criterion—see Okubo (1970) and Weiss (1991)). The difference
between the two orientations is that ζ− takes into account the rotation rate of the strain
axes, whereas the eigenvector of ∇uT does not (see L99).

From the perturbation velocity equations, two natural systems emerge. One implies
the equivalent Okubo–Weiss criterion and so the preferred orientations are those of the
eigenvectors of ∇u; the other one is analogous to the system of L99 with two preferred
orientations ζ ′ = ζ r

′
± for a different eigenvalue problem in the strain basis (cf. appendix

of L99).
Straub (2003) shows that the condition |r ′|< 1 exactly implies the centrifugal

instability criterion∗, whereas the equivalent Okubo–Weiss criterion |row|< 1 does not
∗ For which it is known that azimuthal pressure gradient does not influence the instability.
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yield the appropriate instability condition. On account of the simple system (15), and
of both the numerical simulations of L99 and the recent work of Straub, the expected
result (if (10) were exact) would be that ζ ′ will preferentially align with ζ r

′
− and not

with ζ row− . However, the above inferences suppose that (10) is exact and we show in the
next section that the influence of the ageostrophic pressure gradient in (2) is to introduce
another term in the orientation equations (13b) and (15b).

(c) The ageostrophic pressure-gradient influence
In this section, the complete equation (2) is studied analytically, taking into account

both ∇u and −∇p′
1 but using a simple approximation of the ageostrophic pressure

gradient. As already noted in section 2(a), we are dealing with a stretched vector field
u′ that is non-divergent, so that by taking the divergence of (2), we obtain the equation
relating the perturbation velocity u′ to the perturbation ageostrophic pressure

�p′
1 = 2{J(u, v′)+ J(u′, v)} (18a)

= 2{σn∂xyψ
′ − 1

2 (σs − ω)∂2
xψ

′ + 1
2(σs + ω)∂2

yψ
′}, (18b)

where J denotes the Jacobian operator, ψ ′ the perturbation stream function and (u, v)
the velocity vector in the Cartesian coordinates (x, y). To solve for the perturbation
ageostrophic pressure p′

1, we have to invert a Laplacian. Some insight on the local
dynamical influence of the pressure perturbation may still be obtained by the following
analytical diagnostic that considers a monochromatic perturbation (caveat: even if
a monochromatic function is non-local, this approximation is a first step towards
diagnosing the pressure-gradient effect)

ψ ′(x, y)= Re[A exp{i(kx + ly)}]. (19)

This particular perturbation form leads to a new expression of Eq. (18b)

�p′
1 = 2{−σnkl + 1

2(σs − ω)k2 − 1
2 (σs + ω)l2}ψ ′. (20)

If we consider σn, σs and ω as slowly varying by comparison with the perturbation
variations (WKB assumption), the ageostrophic pressure is also monochromatic and its
gradient is collinear with the stream function gradient ∇ψ ′ and thus perpendicular to
the velocity vector u′

−∇p′
1 = 2

k2 + l2

{
−σnkl + 1

2
(σs − ω)k2 − 1

2
(σs + ω)l2

}
∇ψ ′. (21)

With the particular form (19), u′ can be written as

u′ =
(
u′
v′
)

= A sin(kx + ly)

(
l

−k
)
, (22)

and the orientation θ ′ is thus(
cos θ ′
sin θ ′

)
= ±

 l√
k2 + l2−k√
k2 + l2

 . (23)

This leads to the following calculations

−∇p′
1 = 2{σn cos θ ′ sin θ ′ + 1

2 (σs + ω) sin2 θ ′ − 1
2(σs + ω) cos2 θ ′}∇ψ ′ (24a)

= (σn sin 2θ ′ − σs cos 2θ ′ − ω)∇ψ ′ (24b)

= σ(row + cos ζ ′)ρ′e′⊥. (24c)
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As the pressure gradient aligns with e′⊥, the local spatial influence of ∇p′
1 is simply

to modify the orientation equations (13b) or (15b) and not the norm equations (13a)
or (15a). Let us denote Pθ(p′

1)≡ −∇p′
1 · e′⊥/ρ′, the additional term on the orientation

equation due to the ageostrophic pressure gradient; in a monochromatic context, we
obtain the following formula

Pθ(p
′
1)= σ(row + cos ζ ′), (25)

which implies a new orientation equation

Dθ ′

Dt
= −1

2
σ(row + cos ζ ′)+ Pθ(p

′
1)=

1

2
σ(row + cos ζ ′). (26)

Dθ ′/Dt is the sum of two terms: the first term on the right-hand side comes from the
projection of −∇u · u′, the second term is the pressure-gradient component and is twice
the opposite value of the first term. The pressure gradient in this equation is, thus, not
at all negligible. Both terms are zero if u′ aligns with the eigenvectors of ∇u, and we
still have Dθ ′/Dt = 0 for those directions, even in presence of the pressure term. If ∇u
is slowly varying along a Lagrangian path, the eigenvectors directions would, therefore,
be the preferred directions for u′ by considering the complete (2). However, the studies
of L99 and Straub (2003) have shown the dynamical importance of the variations of
∇u and, more precisely, of the rotation of the principal axes of the strain-rate tensor.
In strain coordinates, the orientation equation in this case is

Dζ ′

Dt
= σ(r + cos ζ ′), (27)

where r = (ω + 2D φ/Dt)/σ is the parameter defined in (17). The fixed points of (15b),
ζ r

′
± , are not the fixed points of the complete equation (27). The complete equation (27)

has two fixed points determined by ζ r± ≡ ± arccos(−r). Our approximation of the pres-
sure term leads us to two couples of preferred directions (ζ row− , ζ

row+ ) and (ζ r−, ζ r+).
These two couples seem to be more appropriate to describe the most probable values
of ζ ′, because the pressure term is known to have a non-negligible influence on the
dynamics of u′. An important point to note is that the productive preferred directions
by considering the complete equation (2), ζ row− and ζ r−, are unstable as shown in ap-
pendix A, whereas the productive preferred directions by considering only the simpli-
fied system (10), ζ row− and ζ r

′
− , are stable. The parametrization of the pressure gradient

is derived from a strong monochromaticity assumption but, as we see later with the
numerical results, the formulation obtained for the projection Pθ(p′

1) of the pressure
gradient on the orientation equation is significant.

In appendix B, we verify by taking into account the β-term and by using the same
monochromatic perturbation that the β-term does not appear in the orientation equation
and, thus, has no influence on the preferred orientations.

To summarize: without the pressure term, two couples of preferred orientations
emerge ζ row± and ζ r

′
± , with the approximation of the pressure term, another couple

emerges ζ r±. By considering only the productive orientations ζ row− , ζ r
′

− and ζ r−, we can
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Figure 2. Stream function ψ (contour interval 8276 m2s−1) of the reference flow (T = 10 days) in the first layer;
(a) the whole basin, (b) zoom at the end part of the jet: area A.

define three analytical estimates of the exponential generation rate

δow ≡ −σ sin(ζ row− )=
√
σ 2 − ω2 , |row|< 1, (28a)

δr ′ ≡ −σ sin(ζ r
′

− )=
√√√√
σ 2 −

(
−ω + 2

D φ

Dt

)2

, |r ′|< 1, (28b)

δr ≡ −σ sin(ζ r−)=
√√√√
σ 2 −

(
ω + 2

D φ

Dt

)2

, |r|< 1. (28c)

We remark that the maximum of δ is equal to σ . It corresponds to the most efficient
structure ζ ′ = −π/2, i.e. when u′ is aligned with the axis of contraction of the strain
rate and is hereafter denoted as δeff ≡ σ .

3. NUMERICAL RESULTS IN A QUASI-GEOSTROPHIC MODEL

In the present study, results are developed for the classical oceanic case of a
wind-driven double gyre using a six-layer quasi-geostrophic model in a rectangular
basin. A strong jet separates the southern anticyclonic gyre from the northern cyclonic
one. The jet has meanders which can detach and form eddies that travel westward.
An example of the flow is shown in Fig. 2, which represents the stream function ψ
in the first layer. In the next sections, our study of the localized disturbances and the
initial error growth for this control flow will focus on the limited area A located at the
exit of the jet (Fig. 2(b)) because of its more turbulent and varied dynamical structures.
The numerical model is presented in appendix C.

The results are produced for a particular ensemble of random perturbations.
The corresponding Monte-Carlo technique is developed in appendix D. Hereafter, we
study perturbation structures that have evolved for ten days (corresponding to roughly
five straining timescales of the basic-state flow), from T = 0 to T = 10 days. All figures
and the different properties are given at T = 10 days for the first layer of the six-layer
model.
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Figure 3. The probability density function at T = 10 days of ζ ′ − ζ r
′

− (dashed line), of ζ ′ − ζ r− (dotted line) and
of ζ ′ − ζ

row− (solid line) conditioned by |r ′|< 1, |row|< 1, |r|< 1 and δ > |δ|max/10. This statistic is obtained
from an ensemble of 200 perturbations.

(a) Alignment dynamics

(i) Regions of large δ. Our aim is to discover if the analytical orientations found
in section 2 emerge or not, and to identify the most representative orientation for the
perturbation structure. Figure 3 represents the probability density function (PDF) of the
three different angles (ζ ′ − ζ r

′
− ), (ζ ′ − ζ r−) and (ζ ′ − ζ

row− ) calculated for 200 random
perturbations conditioned by |r ′|< 1, |row|< 1, |r|< 1 and δ > |δ|max/10. A point to
note is that we consider the intersection between regions where the three analytical
orientations exist, i.e. where |r ′|< 1, |row|< 1, |r|< 1, in order to compare the three
PDFs. For this threshold of large δ, there is a preferential orientation linked with the
Okubo–Weiss criterion ζ row− since the PDF of (ζ ′ − ζ

row− ) has a stronger peak than the
other two PDFs. In other words, in regions of large δ, E and D are statistically non-
collinear and form a non-trivial angle determined by π/2 + ζ

row− . The fact that the
orientation ζ row− is more probable than ζ r

′
− and ζ r− is an unexpected result, since we

saw in section 2 that the most accurate criteria should take into account the rotation of
the vector D. As such criteria represented by the orientations ζ r

′
− and ζ r− are derived

from two distinct approximations, it is unclear why the orientation ζ row− included in
the interval [ζ r ′− , ζ r−] (row ∈ [r ′, r]) emerges. Even if the differences between ζ row− and
the other two orientations ζ r

′
− and ζ r− are not so large, these differences appear robust

and are also found for other finite times (e.g. at T = 20 days) and for other spatial-
scale perturbations. Despite the fact that other terms are involved in the dynamics of
the numerical simulations (baroclinic stretching term and dissipation), the perturbation
velocity vector aligns with an equilibrated orientation that can be analytically predicted
from the combined action of the stretching mechanism by the basic-flow shear ∇u and
by the pressure-gradient correction term.

Let us focus on the exponential kinetic-energy generation rate δ defined in
section 2(a). The ensemble mean (represented by the symbols 〈 〉) of the absolute ex-
ponential generation rate for the 200 Monte-Carlo realizations δMC ≡ 〈|σ sin ζ ′|〉 is
compared with analytical estimates of the instantaneous exponential generation rate of
the perturbation kinetic energy. The influence of the angle ζ ′ on the spatial localization
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Figure 4. Spatial localization of exponential generation rates (s−1) at T = 10 days inside area A; (a) the ensemble
mean of the absolute exponential generation rate for 200 independent realizations, (b) the rate of strain δeff = σ ,
and (c) the estimated exponential generation rate δow. Note that the grey scales are different for (a), (b) and (c).

See text for a discussion of the labelled subdomains in (a).

of the Monte-Carlo exponential generation rate is noticeable in Fig. 4. If we look at the
exit of the jet (subdomain ‘a’ in Fig. 4(a)), σ (Fig. 4(b)) presents two strong maxima
which do not correlate with the Monte-Carlo generation rate (Fig. 4(a)) because | sin ζ ′|
is close to zero in these regions. This behaviour of the Monte-Carlo generation rate in
region ‘a’ is clearly reproduced by the estimated generation rate δow (Fig. 4(c)). Regions
such as subdomain ‘a’ are such that maxima of σ do not correspond to maxima of
the generation rate because of strong vorticity values, which imply approximately that

δow =
√
σ 2 − ω2 � 0. Other regions reveal good correlation of δow with δMC, especially

the subdomain ‘b’ located near the jet core, which exhibits a local maximum for the
fields δMC and δow but not for the rate of strain σ . These two different subdomains
illustrate the important role played by the orientation of the structure on the spatial
localization of the kinetic-energy generation rate. The estimated exponential generation
rate δow is more representative of the Monte-Carlo exponential generation rate δMC than
the rate of strain σ . However, the analytical estimate, δow, cannot apply within regions
where |row|> 1 which clearly exist along the jet axis; this is the case of subdomain
‘c’, for instance, where no special orientation can be diagnosed by our method. In such
regions, there is no real eigenvalue, whereas the mean exponential generation rate is not
too small (nor too large) and our approach does not provide a particular orientation.
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Figure 5. The probability density function at T = 10 days of ζ ′ − ζ r
′

− (dashed line), of ζ ′ − ζ r− (dotted line) and
of ζ ′ − ζ

row− (solid line) conditioned by |r ′|< 1, |row|< 1, |r|< 1 and E · D> |E · D|max/200. This statistic is
obtained with an ensemble of 200 perturbations.

(ii) Regions of large kinetic-energy extraction. In Fig. 5, the same PDFs as in Fig. 3 are
shown, but for regions characterized by large kinetic-energy extraction E · D = δ|u′|2/2,
where the perturbation can extract the most kinetic energy. In these regions of large
E · D, the fixed point calculated with pressure ζ r− is the most probable and performs
slightly better than the eigenvector orientation ζ row− , and much better than the fixed point
ζ r

′
− computed without considering the pressure term. This result is robust to different

types of random perturbation, and has also been found in doubly-periodic quasi-
geostrophic flows (not shown here). In these regions, it is difficult to distinguish which
of ζ r− and ζ row− is the most representative because, on the one hand the PDF of (ζ ′ − ζ r−)
has a slightly higher peak around the abscissa 0 than the PDF of (ζ ′ − ζ

row− ), but on
the other hand regions where |row|< 1 and E · D> |E · D|max/200 represents 59% of
the regions determined by E · D> |E · D|max/200, whereas regions where |r|< 1 and
E · D> |E · D|max/200 concern only 45%.

Figures 3 and 5 show PDFs in regions of positive extraction, i.e. in productive
regions of kinetic energy (E · D> |E · D|max/200). But the joint PDF of the Monte-
Carlo exponential generation rate with the analytical expression given by δow (shown
in Fig. 6) considers both productive and destructive regions (|E · D|> |E · D|max/200).
The analytical growth rate δow corresponds to a good approximation of the Monte-Carlo
growth rate because a strong branch which involves most of the points is superposed
to the bisector of the right quadrant. This strong branch corresponds to a production of
kinetic energy for the random perturbations and a correlation of +1 with the analytically
estimated growth rate δow. However, another less visible branch is approximately super-
posed on the bisecting line of the left quadrant and is linked with a destruction of kinetic
energy and a correlation of −1 with δow. This destructive branch is connected with
the destructive fixed point ζ row+ . A similar diagram for the analytical generation rate δr
shows the same properties. In the present ensemble with large-scale initial perturbations,
productive regions are much more space filling than the destructive ones, and a clear
alignment with ζ r− or ζ row− is visible. The proportion between productive and destructive
regions of kinetic energy depend on the spatial scales of random perturbations. The other
cases examined revealed that destructive regions can be significantly important and that,
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Figure 6. The joint probability density function at T = 10 days of the Monte-Carlo exponential generation rate
with the estimate δow conditioned by |row|< 1 and |E · D|> |E · D|max/200.

within these regions, the angle ζ ′ is close to the destructive orientations ζ r+ or ζ row+ .
A generic property seems to emerge; in regions of production a strong alignment with
ζ r− or ζ row− occurs while in regions of destruction an alignment occurs with ζ r+ or ζ row+ .

To conclude with the PDF results, Figs. 3, 5 and 6 show that the two types of
preferred orientation (ζ row± and ζ r±) derived by taking into account the pressure gradient
are the most probable orientations; it is clearly proven that the orientation ζ r

′
± derived

without the pressure term is less relevant.
Let us now compare more quantitatively the different growth rates obtained by

performing both a spatial and an ensemble average, denoted by 〈〈〉〉, inside the kinetic
energy production regions defined by |r ′|< 1, |row|< 1, |r|< 1 and E · D> |E ·
D|max/200. Such a threshold enables us to consider regions where fixed points exist
and where perturbations extract energy from the reference flow.

〈〈δeff〉〉 = 1.1 10−5 s−1,

〈〈δr ′〉〉 = 8.9 10−6 s−1,

〈〈δow〉〉 = 8.5 10−6 s−1,

〈〈δr〉〉 = 6.1 10−6 s−1,

〈〈δMC〉〉 = 6.9 10−6 s−1.

All the above values are obtained with large spatial-scale perturbations and can change
if we choose another ensemble of perturbations. However, the generic property is
that δeff > δr ′ > δow > δMC > δr . This comparison shows that δr ′ has a more efficient
structure to extract energy than δow, which itself is more efficient than δr . However,
δow and δr better represent the Monte-Carlo growth rate since they are closer to 〈〈δMC〉〉,
as shown above. From a predictability point of view, the information provided by δow
and δr is more useful and more accurate than that of δr ′ or δeff for approximating the
kinetic-energy error growth after a finite time. We remark also that δow overestimates
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Figure 7. The probability density functions at T = 10 days of ζ ′ − ζ ′
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′
− (dashed line),

ζ ′ − ζ r− (dotted line) and ζ ′ − ζ
row− (solid line), conditioned by |r ′|< 1, |row|< 1, |r|< 1 and |u′|> |u′|max/10.

the kinetic-energy error growth while δr slightly underestimates it. In the present case
δr is closer to 〈〈δMC〉〉 than δow, but for other perturbations the reverse can occur.

(iii) Regions of large kinetic energy. In MC, the authors insisted on the fact that
regions of energy extraction do not coincide spatially with regions of large energy
because of the redistribution processes of the pressure work and the advection term.
Which alignment is characteristic of large values of kinetic energy? To answer this
question let us define the following angle

ζ ′
0 ≡

{
0 if row > 0

−π if row < 0.
(29)

This angle is characterized by no extraction; indeed, if ζ ′ = ζ ′
0, then the associated

growth rate δ is equal to zero and the two vectors E and D are perpendicular. This angle
has also the property of being continuous with the angle ζ row− of the eigenvector direction
of ∇u for row = ±1. The PDF of (ζ ′ − ζ ′

0) is compared with that of the three analytical
orientations in Fig. 7 in regions of large kinetic energy. The most probable angle in
these regions is clearly the angle ζ ′

0 corresponding to no extraction. This result shows
that regions where the kinetic energy is already redistributed are characterized by an
equilibrium where no production and no destruction occurs, and where the two vectors
E and D are perpendicular. The second better PDF concerns the fixed point with pressure
ζ r−; this is logical because, among the three analytical orientations derived in section 2,
it corresponds to the less efficient structure and, thus, defines an angle between E and
D close to π/2. The spatial separation between regions of large extraction and regions
of strong kinetic energy can be viewed now in terms of perturbation structure; regions
of extraction are characterized by a non-trivial angle between E and D determined by
either π/2 + ζ

row− or π/2 + ζ r−, and regions of large kinetic energy exhibit no tilt against
the shear and E and D are perpendicular. An interesting feature is that, for the tracer-
gradient dynamics, such a distinction is not discernible in Fig. 5(a) of L99, and regions
of strong PV gradient are also characterized by large growth rates of PV gradient.

(iv) Check on the consistency of the parametrization of the ageostrophic pressure
gradient. One important conclusion from the analytical calculations of section 2 was
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Figure 8. The joint probability density function at T = 10 days of the projection of the pressure gradient on the
orientation equation Pθ(p′

1) with the analytical estimate σ(row + cos ζ ′) conditioned by the same threshold as in
Fig. 6.

that the ageostrophic pressure gradient plays a decisive role in favouring the eigenvector
directions of ∇u and the orientations ζ r± . This influence of the ageostrophic term was
deduced from an analytical approximation of the projection of the pressure gradient
Pθ(p

′
1) on the orientation equation (see (25)). Figure 8 is a joint PDF of Pθ(p′

1) with
the analytical approximation σ(row + cos ζ ′). Figure 8 does not take into account the
β-term; the equivalent expression with the β-term is indicated in appendix B. The figure
shows an ellipsoid centred around the point (0, 0), the principal axis of which is close to
the first bisecting line. The ratio between the major axis and the small axis is almost 1.5.
This means that the analytical formula is significant, and permits us to capture the real
pressure-gradient behaviour. Most of the points are localized around the point (0, 0);
the fact that the pressure-gradient projection is close to zero (x = 0) for the eigenvector
directions (y = 0) is thus confirmed numerically. The analytical approximation of
Pθ(p

′
1), even if it is derived from a strong assumption, is thus significant and represents

rather well the influence of the pressure gradient.

(v) Alignment rationalization. All previous results concerning the relative orientations
of E and D are summarized by the sketch drawn in Fig. 9. The plot is obtained for a
typical perturbation structure which is initially large scale. After ten days, the spatial
structure of the perturbation moves with the meanders of the jet and has a typical spatial
scale comparable with the meanders. The dynamical characteristics of the different
regions can be inferred from the orientation of the perturbation streamlines relatively
to the shear. Regions between lines ‘a’ and ‘d’ are productive regions; the perturbation
can extract energy from the basic flow since the perturbation leans against the shear.
Between lines ‘a’ and ‘c’, the perturbation structure is the most efficient, as E and D
are close to collinearity; δ is large and the most probable orientation is ζ row− . Between
lines ‘c’ and ‘d’, the structure is less efficient, but the kinetic energy is important (tight
streamlines); this is a region of large extraction (E · D> 0) where the most probable
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Figure 9. Sketch summarizing the different results of the alignment dynamics of a typical large spatial-scale
perturbation around the jet at T = 10 days. The jet axis corresponds to the bold continuous line, perturbation
stream-function isolines are the thin continuous and dashed lines. Isolines of π/2 + ζ ′ for this particular
perturbation correspond to the bold dashed lines: −π/4 (line ‘a’), 0 (line ‘b’), π/4 (line ‘c’), π/2 (line ‘d’), and
3π/4 (line ‘e’). Note that, for simplicity, the direction of E is arbitrarily plotted parallel to the y-axis everywhere.

See text for further explanation.

orientations are ζ row− and ζ r−. Line ‘d’ is the line where E and D are perpendicular and
corresponds almost to a line of maximum kinetic energy. Regions lying between lines
‘d’ and ‘e’ are destructive, and the most probable structures are given by ζ row+ and ζ r+.

(b) Error fields
The following results present the spatial distribution of the error fields and their

relation to the reference flow. An interesting result noticed by Snyder and Hamill
(2003) for Lyapunov vectors, and Snyder et al. (2003) with a Monte-Carlo technique,
is that the potential-vorticity error field (q ′) is localized in regions of large gradients of
potential vorticity of the reference flow (|∇q|). This strong correlation is also present
in our case at T = 10 days (see Figs. 10(a) and (b)). This property was first proved
analytically by Thompson (1986) for homogeneous, isotropic initial-error assumptions,
and systematic numerical experiments in quasi-geostrophic flows performed by the
above authors suggest that this is a generic property. Even if a transient initial phase can
occur for layers in the domain interior in which the PV error field is not yet stabilized,
Snyder et al. (2003) systematically found that after two days (in an atmospheric quasi-
geostrophic model) a concentration of PV error in regions of large PV gradient of the
reference flow. In our case, at T = 10 days all the layers present a strong correlation
between the root-mean-square of the PV error field calculated with 200 perturbations
(Fig. 10(a)) and the PV gradient of the control flow (Fig. 10(b)). The same feature can
be found with the relative-vorticity variable, as seen when comparing Fig. 10(c) with
Fig. 10(d). Indeed, relative-vorticity errors (Fig. 10(c)) are localized in regions where
the relative-vorticity gradient of the reference flow (Fig. 10(d)) is large. For example,
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Figure 10. Comparison between the spatial structures of the perturbations and those of the reference flow: (a) the
root-mean-square of the potential-vorticity (PV) error field (s−1) (convergence to within 1% obtained with 200
perturbations), (b) the magnitude of the horizontal PV gradient of the reference flow (m−1s−1), (c) the root-mean-
square of the relative-vorticity error field (s−1), and (d) the magnitude of the horizontal relative-vorticity gradient

of the reference flow (m−1s−1).

fields related to PV (Figs. 10(a) and (b)) only present one large maximum along the
jet, whereas those related to relative vorticity (Figs. 10(c) and (d)) have three bands
of maxima along the jet, with the largest one near the jet core. Moreover, small-scale
structures of ω′ in the region north of the jet axis are well represented by |∇ω|, but not at
all by |∇q|. This suggest that, for a given scalar variable s, its error growth s′ is localized
in regions of strong |∇s|, and the essential ingredient seems to be the linearization of
Ds/Dt = 0 (Ds′/Dt = −u′ · ∇s).

But what is occurring for the kinetic-energy error growth? By analogy with scalar
results and the linearized velocity equation (2), a comparison between the root-mean-
square of the kinetic-energy error field (u′) and the velocity-gradient tensor ∇u is tested
in Fig. 11. The u′ maxima (Fig. 11(a)) are localized in regions where the norm of ∇u
is large (Fig. 11(b)) (its norm is defined as

√
σ 2 + ω2), and is not always in regions

of strong vorticity (Fig. 11(c)) or of strong rate of strain (Fig. 11(d)). For instance, the
kinetic-energy error field (Fig. 11(a)) presents a strong maximum at the jet exit that is
also seen in σ (Fig. 11(d)) but not in ω (Fig. 11(c)). By contrast, for the isolated eddy
located in the lower left part of the figure, the kinetic error field (which is very strong
inside the eddy core) is well correlated with ω but not at all with σ . The correct field,

which is well correlated with the kinetic error field, is thus
√
σ 2 + ω2. This last result

concerning kinetic-energy error localization is another property showing how the tensor
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∇u influences the perturbation velocity-field behaviour. Another important remark is
that regions of large perturbation kinetic energy (Fig. 11(a)) are well separated from
regions where exponential generation rates are strongest (Fig. 4(a)) as already noted in
section 3(a). For example, along the jet, the largest growth rates are localized around the
top of the meanders (region ‘b’ in Fig. 4(a)) whereas the kinetic energy error field has
maxima in regions where the curvature of the jet is the smallest. This spatial separation
is also clear for the isolated eddy; the perturbation kinetic energy is large in the centre of
the eddy whereas the exponential generation rates are localized around it (see Fig. 4(a)).

4. CONCLUSION

In this paper, we have focused on the generation term of the perturbation kinetic
energy to get some information on how the error due to uncertain initial conditions in
the model state can grow. As shown by MC, the generation term is the scalar product
between two vectors E and D, and is thus strongly dependent on the angle between E
and D (π/2 + ζ ′ in our notations). We have shown that the preferred values of this angle
ζ ′ can be found by analysing the linearized momentum equations in their Lagrangian
form and, more precisely, the orientation equations for the perturbation velocity that are
inferred. A simple parametrization of the ageostrophic pressure term has been verified
to be not too far from the real ageostrophic pressure-gradient behaviour. The preferred
orientations that are predicted analytically are composed of two couples (ζ row− , ζ

row+ )
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and (ζ r−, ζ r+). The couple (ζ row− , ζ
row+ ) corresponds to the orientation of the eigenvectors

of ∇u, the couple (ζ r−, ζ r+) corresponds to fixed points of the orientation equation.
It has been shown numerically with a Monte-Carlo technique that the perturbation
angle ζ ′ is close to ζ row− in regions of large exponential generation rate. In regions of
large extraction, ζ row− or ζ r− are the two most probable values for ζ ′. Finally, in regions
where extraction occurs, the two significant orientations are those derived from the best
approximate orientation equation which takes into account the ageostrophic pressure
gradient. This unexpected result comes from the fact that the orientation associated
with the eigenvector of ∇u is globally more relevant than the orientation that takes into
account the rotation of D. This result is still unclear to us, but it should be kept in mind
that our parametrization of the pressure gradient is rather coarse.

We have observed that the destructive orientations given by ζ ′ = ζ
row+ and by

ζ ′ = ζ r+ are the preferred orientations in the energy destructive regions, which for
other types of random ensembles can be almost as important as the productive regions.
The generic property is the alignment with ζ row− or ζ r− in productive regions and with ζ row+
or ζ r+ in destructive regions, while the proportion between productive and destructive
regions depends on the perturbation spatial scales and on the finite time length.

Concerning the alignment dynamics in regions of strong kinetic energy, we have
found that E and D are perpendicular, and that these regions are characterized by no
extraction.

These results on alignment dynamics provide an analytical tool for estimating the
spatial localization of the exponential generation rate and its spatial average. The spatial
average estimations 〈〈δow〉〉 or 〈〈δr〉〉 are useful global diagnostics for quantifying the
kinetic-energy exponential generation rate, and for providing a better evaluation of the
predictability time of a given flow than the average rate of strain. The estimations of
the local exponential generation rate could be used to locate the specific regions where
unstable structures are the most probable; such regions would be characterized by both
a strong rate of strain and a weak vorticity in the reference flow.

An intrinsic limitation of our Lagrangian approach is that we cannot systematically
characterize the two main redistribution terms—the advection of the energy by the basic
flow and the ageostrophic pressure work—and we cannot explain why all the maxima of
the kinetic-energy error field are concentrated in regions where the norm of ∇u is large.
We have found numerically, however, that this spatial distribution of the kinetic-energy
errors is mainly governed by the generation-rate term which depends strongly on ∇u.

The ageostrophic pressure gradient is also a function of the basic-state strain field
(see (18)), and thus participates to the spatial correspondences between |u′| and the
norm of ∇u. Furthermore, accurate analytical analyses should be attempted to clarify
the ageostrophic pressure-gradient role.

Finally, we want to emphasize that our analytical diagnostics, which have been
obtained with a single simulation, agree with the statistics obtained by the Monte-Carlo
approach that have required 200 simulations. Such an analytical approach is thus much
less computationally intensive than an ensemble-prediction method.
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3.14 1.57 0 1.57 3.14
1.2

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

+
r

stable unstable

1_ D__
Dt

= r   cos

r

′ ′ ′

′′ ′

Figure A.1. Stability diagram of (15b) for |r ′|< 1.

3.14 1.57 0 1.57 3.14
1.5

1

0.5

0

0.5

1

unstable stable

1_ D__

+

Dt
=  + cos
′ ′

r

′

r r

Figure A.2. Stability diagram of (27) for |r|< 1.

APPENDIX A

Stability analysis

Figure A.1 shows the stability diagram of (15b); the productive fixed point ζ r
′

−
is stable, whereas the destructive fixed point ζ r

′
+ is unstable. Likewise ζ row− is stable

whereas ζ row+ is unstable.
Figure A.2 corresponds to the stability analysis of the complete orientation equation

(27); the productive fixed point ζ r− is unstable whereas the destructive one is stable.
Similar results can be obtained for the eigenvector directions when we consider the
complete equation (26); the productive structure is unstable whereas the destructive one
is stable. All these differences between the orientation equations with the pressure term
and those without it stem from the fact that the projection of the pressure gradient on
the orientation equation is twice the opposite of the projection of −∇u · u′.
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APPENDIX B

Influence of the β-effect on the orientation equation
In presence of β, Eq. (2) has the following form

Du′

Dt
= −∇u · u′ − ∇p′

1 + βy∇ψ ′, (B.1)

which can also be written as

Du′

Dt
= −∇u · u′ − ∇p̂ ′

1 − βψ ′j, (B.2)

where p̂ ′
1 ≡ p′

1 − βyψ ′ (same definition as in (2.3) of Hua et al. (1998)) and j is the unit
vector in the meridional direction. By taking the divergence of (B.2), we obtain

�p̂ ′
1 = 2{J (u, v′)+ J (u′, v)} + βu′, (B.3)

and then, by inverting the Laplacian operator and applying the gradient operator,

−∇p̂ ′
1 − βψ ′j = −∇[�−1{2J (u, v′)+ 2J (u′, v)}] − ∇{�−1(βu′)} − βψ ′j. (B.4)

The first term on the right-hand side is analysed in section 2(c), but the sum of
the two other terms involves the β-term. Let us now consider the following vec-
tor −∇(�−1(βu′))− βψ ′j and its projection on the orientation equation. If we con-
sider the monochromatic perturbation introduced in (19), we have βu′ =Aβl sin(kx +
ly) and −βψ ′j = −Aβ cos(kx + ly)j. By inverting the Laplacian for the first term
�−1(βu′)= −Aβl sin(kx + ly)/(k2 + l2), and then by applying the gradient operator,
−∇{�−1(βu′)} = Aβl cos(kx + ly)k/(k2 + l2). The vector that involves β, −∇{�−1

(βu′)} − βψ ′j, is generally non-zero, but let us look at its projection on e′⊥ =
±(k, l)/√k2 + l2. As

−∇{�−1(βu′)} · e′⊥ = ± −Aβl√
k2 + l2

cos(kx + ly)

and

−βψ ′j · e′⊥ = ± Aβl√
k2 + l2

cos(kx + ly),

we thus obtain [−∇{�−1(βu′)} − βψ ′j] · e′⊥ = 0, which means that for a monochro-
matic perturbation the β-term has no effect on the orientation equation.

This analytical estimate shows that taking into account the β-term does not change
our main conclusion; the entire ageostrophic vector including the pressure and the β
terms, (−∇p̂ ′

1 − βψ ′j), is zero for the eigenvector directions of ∇u.

APPENDIX C

The quasi-geostrophic ocean model
The numerical code is an extension of the basic two-layer box ocean model

by Holland (1978), and a detailed description can be found in papers by Schmitz
and Holland (1986) and Barnier et al. (1991). The physical variables are the stream
function ψk in the layer k (k = 1, 6), the Coriolis parameter f = f0 + βy, the steady
sinusoidal wind stress τ at the ocean surface, the layer thicknessHk, the reduced gravity
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g′
k+ 1

2
between layers k and k + 1, the biharmonic frictional coefficient A4 and the

bottom frictional coefficient R. The quasi-geostrophic equations of motion for potential
vorticity qk

qk = ∇2ψk + f + f 2
0

Hk

 1

g′
k− 1

2

(ψk−1 − ψk)− 1

g′
k+ 1

2

(ψk − ψk+1)

 , (C.1)

is given by
Dqk
Dt

= −A4∇6ψk + δk,1
curl τ

H1
− δk,6R∇2ψn. (C.2)

The vertical boundary conditions correspond to rigid-lid conditions w = 0 at z= 0 and
z=H , and the horizontal ones are determined by the free-slip conditions ∇2ψk = 0
on all horizontal boundaries. The auxiliary conditions

∫ ∫
(ψk − ψk+1) dx dy = 0 for

each layer k ∈ [1, 5] are used for model consistency. Equation (C.2) is integrated using
finite differences on a rectangular basin with horizontal dimensions Lx = 3600 km and
Ly = 3200 km. The horizontal grid resolution is 10 km, and the different depths of the
different layers are H1 = 300 m,H2 = 350 m,H3 = 400 m,H4 = 500 m,H5 = 1350 m
and H6 = 2100 m. The steady wind stress is given by τ0 = 0.6 10−4 m2s−2, the
biharmonic coefficient by A4 = 1.5 10−10 m4s−1 and the bottom friction coefficient
by R = 10−7 s−1.

APPENDIX D

The Monte-Carlo method
In this section, the initialization method of this ensemble is presented. All wave

numbers are not excited in the same manner. In order to have physically relevant
perturbations, we want the kinetic energy of the perturbation field to correspond to a k−3

spectrum. If a white noise is applied at each grid point for the perturbation horizontal PV
gradient (in two dimensions a white noise corresponds to a k+1 spectrum), the spectrum
of the perturbation PV q ′ is k−1, and thus the kinetic energy has a k−3 spectrum.
The horizontal PV-gradient perturbation is initialized as

∇q ′ =
(
ε1
ε2

)
, (D.1)

where ε1, ε2 are random numbers selected uniformly on the interval [−1, 1] (white
noise). By applying the divergence on ∇q ′ and then a three-dimensional Poisson solver,
the perturbation potential vorticity q ′ has indeed a k−1 spectrum and the kinetic energy a
k−3 spectrum for most of the wave numbers. Such a spectrum is physically relevant and
permits us to obtain a mean error field that converges for an ensemble of 200 realizations.
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